Hodoscope Recalibration and More PbGl Analysis

Joe Osborn

University of Michigan

Overview

- Working with Jin on EMCal linearity and resolution plots
- Added new linearity and resolution plots for the first/second joint EMCal and HCal energy scans to the wiki
- Jin tasked me with making a hodoscope recalibration, i.e. recalibrating measured energies due to hodoscope response
- Today
 - Hodoscope recalibration method
 - Some results
 - Rechecking the PbGl resolution

Hodoscope Recal Method

 ShowerCalib module shows that energy response is clearly a function of horizontal and vertical hodoscope position

• Procedure:

- Make 5x5 recalibrated energy sum plot for each 8x8 hodoscope bin for 8 GeV data
- Energy scale correction is then E_{beam}/E_{peak} from Gauss fit
- Apply this correction to the (already) shower calibrated cluster energies

Hodoscope Recalibration

First joint energy scan (runs 3736-3741)

Modified ShowerCalib Module

- I modified Jin's ShowerCalib module to include the hodoscope recalibration values
 - From old production (2/3/17): $E_{recal} = E_{tower} \times C_{shower_calib}^{Jin} \times C_{hodoscope_calib}^{Joe}$
 - For new production (2/17/17) which includes Jin's shower calibration already: $E_{recal} = E_{tower} \times C_{hodoscope_calib}^{Joe}$
 - Analyzed runs 3736-3741
 - Joint HCal/EMCal scan tower 21

Example Hodoscope Fits

- This example shows energy response for horizontal hodoscope 4, and all vertical hodoscopes
- All hodoscopes in backups
- Fit to Gaussian and extract mean
- Correction is 8/μ for each hodoscope

EMCal Energy Resolution with Added Hodo Recalibration

- Resolution most impacted with 5x5 hodoscope cut (shown above)
- Smaller hodo cuts basically show no difference between the uncalibrated and calibrated energies (see backups)
- This is unsurprising as the smaller hodoscope cuts were implicitly selecting the areas that responded well already

Hodoscope Recalibration

Third joint energy scan (runs 3997-4002)

Joint Energy Scan 3

- This weekend a joint energy scan was taken with EMCal tower 21 including two block boundaries
- Will give us some idea of the resolution/linearity degradation when block boundaries are taken into consideration
- Took a quick look at the data for doing the hodoscope recalibration in the future
- Additionally made hodoscope recalibration for this set of runs too.
 Followed same method as for first joint runs
- Using run numbers 3997-4002, i.e. with EMCal bias at nominal level

Example Hodoscope Fits

- Significantly worse response
- Note that the means are scattered around ~6.5, i.e. 1.5 GeV away from the nominal beam energy
 - For comparison the response from the first joint run was ~0.4 GeV

Energy Response

- Energy
 linearity
 greatly
 improved with
 recalibration
- Resolution
 looks basically
 the same.
 Why?

Energy Response

- Resolution might be a little better if fits are better constrained to a particular region
- Unsurprising:

 large background
 that is still present
- Will need to work more with cuts

PbGl Resolution

PbGl Resolution

- Reminder last week showed that PbGl resolution in third EMCal energy scan was not very good
 - Gains were turned down on PbGl resulting in effect
- PbGl runs taken in front of HCals recently
- Analyzed runs 3860-3874, info on wiki
- Cuts: C1 energy>100, vertical and horizontal hodoscope energy >3, PbGL time<12

Last Week

Third EMCal3 Energy Scan

PbGl from Runs 3860-3874 (new)

Dedicated PbGl Runs (3307-3332)

With HCal (3860-3874)

- 1/sqrt(E) term is comparable to dedicated PbGl scan (left) but constant term is still larger
- Overall better than the third EMCal energy scan (from previous page)

Summary

- Made hodoscope recalibration values for correcting measured energies for first joint energy scan
- Analyzed new energy scan PbGl runs
- To-Do
 - In principle this recalibration could go into next production (if others are satisfied with it)
 - Working on hodoscope recalibration for third joint energy scan which includes
 2 block boundaries

Back Ups

Hodo Recal (first joint energy scan)

1x1 Hodoscope Cut (runs 3736-3741)

With Hodo Recal

Without Hodo Recal

2x3 Hodoscope Cut (runs 3736-3741)

With Hodo Recal

Without Hodo Recal

5x5 Hodoscope Cut (runs 3736-3741)

With Hodo Recal

Without Hodo Recal

8x8 Hodoscope Cut (i.e. no cut) (runs 3736-3741)

Hodo Recal (third joint energy scan)

i.e. with block boundaries

PbGl extras

PbGl Extra Plots

1050V 20 GeV

- Individual ADCs for a run with Gaussian fits
- one panel = one run= 1 beam energy

PbGl Extra Plots

Joint PbGI/HCal Energy Scan

John Haggerty's Online PbGl analysis of 3860-3874

Note: I found in dedicated PbGI run that including C1 and hodoscope cuts raises constant value and reduces 1/sqrt(E) term. See wiki

My mean ADCs seem comparable if not slightly larger than John's online analysis